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Abstract

Recent improvements in scanning technologies such as consumer penetration

of RGB-D cameras, lead obtaining and managing range image databases practical.

Hence, the need for describing and indexing such data arises. In this study, we

focus on similarity indexing of range data among a database of range objects

(range-to-range retrieval) by employing only single view depth information. We

utilize feature based approaches both on local and global scales. However,

the emphasis is on the local descriptors with their global representations. A

comparative study with extensive experimental results is presented. In addition,

we introduce a publicly available range object database which is large and has a

high diversity that is suitable for similarity retrieval applications. The simulation

results indicate competitive performance between local and global methods.

While better complexity trade-off can be achieved with the global techniques,

local methods perform better in distinguishing different parts of incomplete

depth data.
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1. Introduction

3D object description and retrieval have become popular research topics

during the last decade. The field is attracting more and more people every day

due to increasing availability of 3D models with the use of improved scanning

technologies, increased processing power, increased storage capabilities, and5

the progress in visualization and printing technologies, as well as the consumer

penetration of Kinect sensor and 3DTV. These improvements facilitate obtaining

and managing large 3D model databases which arises the need of describing and

indexing these models and similarity retrieval systems.

We distinguish similarity retrieval, instance recognition and classification10

(category recognition) problems. These problems are all considered under the

broad title of “object recognition” usually. Classification task is defined as

determining the category name of a new observation (query) based on the

training set of objects with known class memberships (e.g. query is a member

of “dog” class). Supervised learning methods are usually employed which gather15

features from a training set and obtain a representative descriptor of a class.

Instance recognition (verification) on the other hand does not utilize class labels

but searches for specific objects learned beforehand among the new observation

data (e.g. query does not contain “Pluto” but contains “Scooby-Doo”). Number

of objects can be learned during the training phase. Conversely, similarity20

retrieval (indexing) applications usually do not employ supervised learning

techniques. Main motivation in this strategy is to ensure the scalability of the

retrieval application. Scalability guaranties that new objects can be introduced

into the database easily without performing complex/manual data labelling

and re-training the system. Similarity retrieval applications search for data25

in the database that are similar to the query and these applications are not

skilled to convey other semantic information (e.g. query is most similar with the

database object obji, then objj , objk, ...). Therefore, classification, verification

and indexing methods operate on different domains and serve distinctly.

Searching geometrically similar examples of a complete 3D mesh model (query)30
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among a database of complete 3D mesh models is called 3D-to-3D retrieval. In

a similar manner, searching a range model among a database of complete 3D

mesh models is called range-to-3D retrieval. In literature, 3D-to-3D retrieval is

studied extensively, whereas there are relatively limited studies on range-to-3D

retrieval research. On the other hand, searching a range image among a database35

of range images, range-to-range retrieval, is not studied much. Here, it should be

noted that we are aware of the recent studies employing depth data in similarity

retrieval applications. However, in those studies, either multiple views of query

and/or database models are employed [1, 2, 3] or additional information such as

texture, colour or intensity is incorporated [4]. On the other hand, this work40

considers the problem of retrieving objects based solely on the depth information

of a single view among a database of similar data; supplementary information

such as texture, colour, intensity, etc. is not incorporated.

The frequency of occurring range data in daily life are more frequent relative

to other 3D representations. The widespread usage of range data is due to45

new generation depth sensors such as Kinect [5] which is affordable and has a

real-time nature. Therefore, we focus on range-to-range retrieval in this work

and present a comparative study. While the input data type is range image we

limit ourselves to isolated objects. We have not focused on segmenting objects in

range scenes; several approaches exist ([6],[7]) and their performances probably50

have effects here which should be studied in addition.

This paper extends our prior work [8] and explores several other feature based

approaches for range model retrieval. In this study, global and local feature

extraction methods are proposed, evaluated, and compared on our database

which is suitable for testing similarity retrieval methods. The paper is organized55

as follows. Next section gives a brief summary on the 3D shape retrieval literature.

Features that are based on local surface properties employed in this study are

then presented in Section 3. The following section describes global features along

with our lossless description technique. Section 5 describes the database and

presents experimental results. Finally, Section 6 summarizes and concludes the60

paper.
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2. Related Work

3D object description is treated in vision research and also in sole shape

analysis discipline with some differences. In shape analysis research, similarity

retrieval and part-based matching studies among watertight mesh models are65

popular with its contests (i.e. SHREC 1). Vision side is mainly interested in

instance recognition, point correspondences, and registration. Considering both

modalities, the methods used in 3D description can be classified into feature

based, structural-topological based, and view based approaches. Feature based

methods can further be classified into local description and global description.70

Global methods usually preferred in similarity retrieval whereas local ones are

popular in partial matching and point correspondences. Among the global

description studies, cord and angle histograms [9], 3D Zernike moments [10],

shape histograms [11], spherical harmonics [12, 13, 14, 15], shape distributions

[16], and diffusion distances [17] can be listed. On the other hand, shape75

spectrum [18], splashes and 3D curves [19], point signatures [20], spin images [21],

local feature histograms [22], multi-scale features [23], auto diffusion function/

heat kernel signatures (HKS) [24, 25], and 3D histogram of oriented gradients

(3DHOG) [26] are some notable local descriptors. Most of these local shape

descriptors can be extended to contain more global information by adjusting the80

size of the local region that is being described. Reeb graphs [27, 28], skeletons

[29], curve-skeletons [30] are structural-topological based approaches which are

efficient in articulated shape description. In view based methods, 3D objects are

represented by several 2D images (depth buffers or silhouettes) obtained from

various viewing angles. Lightfield descriptor [31], compact multi-view descriptor85

(CMVD) [32], bag-of-features SIFT (BF-SIFT) [33], and panoramic views [34]

are view based studies. The literature certainly contains many other studies and

we refer the reader to Guo et al. [35], Tangelder and Veltkamp [36] and Bustos

et al. [37] for detailed surveys.

1http://www.aimatshape.net/event/SHREC/
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The usage of range data became widespread after the release of new generation90

depth cameras and range scanners such as Kinect [5] and research on 3D range

object recognition in computer vision side has accelerated afterwards. Early

studies on range image analysis [20, 19, 21, 38], address the surface matching

problem. Complete object models which are constructed initially are searched in

a partial scene by matching points. These instance recognition methods are also95

utilized in surface alignment. Later, range-to-3D retrieval methods are presented

[39]. Finally, RGB-D data are utilized for instance recognition and classification

[40, 41, 42, 43]. These RGB-D cameras have significant advantages compared to

laser scanning devices: i) they can operate in real time (up to 30 Hz), ii) they

are affordable, and iii) depth data is synchronized with the color information.100

In this paper we focus on similarity retrieval of single view depth data instead

of employing complete 3D models, multiple views, or additional information such

as texture, colour, intensity. The motivation for obtaining a range image retrieval

system could be due to the some new paradigms, such as 3DTV archive systems,

3D range object databases or LIDAR systems. There are some similarities105

between range image similarity retrieval and partial matching or range-to-3D

retrieval research; however, the differences are quite crucial. In partial matching

research [44, 45], query is a part of a 3D model where the part is usually identified

with topologically valid mesh, as well as the database consisting of 3D complete

models. In this case, local descriptors are evaluated and a matching score is used110

to obtain a similarity degree between the query and the database models. Latter

type of studies query range images [46, 32, 33] among a database consisting

of complete 3D models. In this case, database models are viewed from several

directions to get a similar viewing with the query. Then, they search the best

match among the views for indexing. The only difference between these types of115

study from view based 3D similarity retrieval approaches is that single view of a

query is used instead of multiple views. The descriptors are usually obtained

from 2D image features.

If the database images and the query are both range images, then partial

matching and view based approaches become deficient, since 3D geometry of the120
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object is not explicitly given in the range image representation. Although range

images contain 3D information, they are different from complete 3D models.

These differences are due to i) self-occlusion (Figure 1), ii) transformations

and iii) view dependent partial geometry (Figure 2). An exaggerated example

of a self-occlusion is presented in Figure 1 where two distinct objects have125

almost same range image representations. Usually self-occluded regions are

formed around salient regions. These salient regions are generally considered

as the informative parts of objects. The surface represented by a range image

containing self occluded regions might be different than the actual model. This

situation can be observed in a hand model shown in Figure 2. In cases where130

self-occlusions are present, local descriptors which are extracted around such

regions (e.g. fingers) might be misleading. Therefore, the description obtained

for the same region in another view probably will be different. Global descriptor

might also be misleading in some situations as shown in Figure1. Translations

and rotations are other sources for information losses in range imaging. Sampling135

density varies as the objects are subject to such transformations. As a result,

fine details disappear as the objects become distant from the camera.

Figure 1: An extreme example of self occlusion. Distinct objects may result in similar range

images depending on the viewing direction.

In this paper, local and global 3D features are employed for similarity retrieval

of range models among a set of range models within an unsupervised framework.

Well-known and simple descriptors which can be applied both locally and globally140

are selected. Local features are combined by the “Bag of Features” (BoF) method.

This framework also allows employing more complicated surface descriptors such

as the ones implemented in the Point Cloud Library (PCL) 2. This study adapts

2http://pointclouds.org/
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Figure 2: Objects shape information captured by range sensors depend on the viewing

direction. (Top) Sampling density changes as objects experience rotations and (Middle)

translations. (Bottom) Self occlusions is another challenge in range imaging. Details and/or

discriminative regions may lost due to occlusions.

image based features such as Scale Invariant Feature Transform (SIFT)[47] and

Speeded-Up Robust Features (SURF) [48] for range images by utilizing shape145

index mapping. We investigate the performances by utilizing depth information

only. Incorporating other object attributes such as color, texture, and scene

semantics probably yield better results in indexing similarities. However, we aim

to compare depth-only features for retrieval applications rather than improving

the indexing performance.150

3. Local Description

Since 3D shapes have insufficient features and keypoint repeatability is not

satisfied, local descriptors in 3D shape analysis are considered to be less discrim-

inative and far from being robust [49]. However, any experimental evaluation
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Figure 3: Bag of Features framework. In the off-line phase, vocabulary is generated by simply

clustering local features (n-dimensional vectors) into k groups. The set of range objects

that are used in generating the vocabulary does not have strict constraints. It could be any

combination of objects that can provide adequate representative samples for local geometry.

Secondly, database objects’ features are assigned to the closest vocabulary cluster and counted

to form a histogram which eventually forms BoF representations. During test time, BoF

descriptors of query and database objects are compared and sorted according to the employed

distance measure.

for comparing local and global descriptors for depth data are demanding. In155

this study, we select “spin images” [21], adopted “D2 distributions” [16] and

“3D moment invariants” [50] for local description, and utilized “shape index”

mapping for extracting image based local features. These features are then

combined using the “bag of features” method [51] to represent range images.

Similarity is computed as the distance between the corresponding bags of features160

representations.

3.1. Bag of Features

In the BoF approach, there are three main steps: i) feature detection and

description, ii) construction of visual vocabulary(dictionary), iii) matching (see

Figure 3). The main goal in the feature detection is to find keypoints encapsu-165

lating significant information that are also robust across transformed versions of

the image. Feature descriptors which are usually represented as vectors carry

local information in the neighbourhood of each keypoint. Visual vocabulary

(dictionary) is built by clustering all the extracted features from a dataset of

images. The selection of the number of clusters (k) is empirical, although it170
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is critical. Obtaining BoF representation of database images is the next stage.

First, features are extracted from an image. After that features are assigned

to the closest cluster (word) in the vocabulary. Then, the count of each word

that appears in the image is used to form the BoF representation of the image.

When a query is placed, firstly the BoF representation is constructed. Then the175

BoF representation of the query image and BoF representations of the database

images are compared and matched.

3.2. Descriptors

Spin Images:. The spin image descriptor [21] is one of the well-known object-

centered surface descriptor that can be used both locally and globally. It is a180

two-dimensional histogram of the spatial distribution of neighbouring points

around a keypoint. The local coordinate system is computed at a point using

its position and surface normal. The positions of other surface points with

respect to the local coordinate system are then described by two parameters

(α, β) (Figure 4). The perpendicular distance to the surface normal −→nx is185

defined as the α (radial) coordinate and the signed perpendicular distance to the

tangent plane defined by surface normal and the surface point px is defined as β

(elevation) coordinate. These (α, β) parameters are computed and a histogram

representation is obtained for points residing in the support region. The support

region is defined as the maximum allowed distance from the point of interest.190

The histogram obtained in object-centered coordinate system can be represented

as a 2D image (spin image) and it is utilized as the descriptor. The control on

the amount of local information can be adjusted by varying the support region

parameter. In the limit, all points are included in the descriptor and a global

description can be obtained. Utilizing object-centered coordinate systems makes195

the spin images descriptor rotation and translation invariant.

3D moment invariants:. Moments, especially Hu moments, are popular tools

in 2D object recognition. Also, their 3D counterparts [50] are proposed. Hu

moments are scalar quantities used to describe the distribution of object points.
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Figure 4: (Left) Spin image calculation. (Middle) Sample spin image obtained around the tip

of the nose globally. (Right) Same point is used for describing the surface locally by decreasing

the support region rmax.

They are simple descriptors allowing translation and rotation invariant compu-200

tation for 3D models. Low order moments capture coarser shape information

whereas high orders define the details. In order to obtain a translation invariant

descriptor central moments µk`m of order ”k`m” are employed which are defined

as follows:

µklm =
∑∑ ∑

∀p∈R

(x− x)
k
(y − y)

`
(z − z)m (1)

where (x, y, z) is the centroid of the local region R and p(x,y,z) is the 3D point205

coordinates in R3. Following this, translation and rotation invariant second

order moments are defined as:

J1 = µ200 + µ020 + µ002

J2 = µ200µ020 + µ200µ002 + µ020µ002 − µ2
110 − µ2

101 − µ2
011

J3 = µ200µ020µ002 + 2µ110µ101µ011 − µ002µ
2
110 − µ020µ

2
101 − µ200µ

2
011

(2)

In this study, these three invariants are concatenated into a compact feature

vector f = (J1, J2, J3) to form the final descriptor.

D2 distributions:. Osada et al. [16] propose a method for describing 3D shapes210

as a probability distribution sampled from a function and have experimented

five shape functions measuring global geometric properties of an object. Shape
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distributions are easily computed and similarity between the objects can be

measured using metric distances. One example of a shape distribution which is

called “D2” represents the distribution of Euclidean distances between pairs of215

object points selected randomly. In this study we limit the selection of points to

a local region in order to obtain a local descriptor (Figure 5a). Moreover, in the

following section, we also employ the D2 distribution as a global descriptor by

releasing this constraint. The motivation of employing this early descriptor in

this work is due its simplicity and yet its efficiency in describing 3D shapes in a220

pose independent way.

Figure 5: a) D2 Distribution method, b) Sample range image c) Salient regions

Image based features based on shape index mapping:. There are two key features

for 3D surfaces: orientation and curvature. A 3D point can be described by

its minimum and maximum curvatures (principal curvatures) or some other

functions of these principal curvatures κ1, κ2. “Shape Index” (SI) [52] is one

of a such measure with an appealing property of being scale, translation, and

rotation invariant. The curvature values on a surface can be obtained robustly

by fitting a quadric surface to the local patch. Then the shape index at point p

is calculated using principal curvatures as follows:

SI(p) =
1

2
− 1

π
arctan

κ1(p) + κ2(p)

κ1(p)− κ2(p)
(3)

where κ1 ≥ κ2. Distinct surfaces correspond to a unique shape index value in the

[0, 1] interval except planar surfaces. Principal curvatures vanishes (e.g. : κ1 =

κ2 = 0) on planar points and shape index become indeterminate. Representing
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surface points in range images by their corresponding shape index values generates225

a new mapping from 3D point coordinates (x,y,z) to shape index domain [0,1].

Image representation of this transformation is called “shape index mapping”.

Such a mapping makes a strong emphasis on the points where the surface deviate

from being smooth. The effect can be observed even for small changes due to

equation’s non-linear nature (Equation 3). In Figure 6, three examples of shape230

index mapping are shown. Compared to depth maps, surface characteristics and

shape details are more significant in shape index mapped images. Therefore,

utilization of feature extraction methods based on shape index images becomes

more feasible. In this study, (SIFT) [47] and (SURF) [48]; which are popular

descriptors because of their accomplished performances; are employed as image235

based features .

Figure 6: Shape index mapping of range images. (Top) Examples of range images, and (bottom)

corresponding shape index mapped images.

3.3. Keypoint Detection

Identifying salient points on a 3D surface is more challenging than detecting

keypoints in images, since images have richer and distinct features. Therefore,

in images, keypoint repeatability can be achieved relatively easily. Nevertheless,240

there exists number of studies for keypoint detection on 3D surfaces [53, 54].
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However, none of these methods are able to ensure the distinctiveness criterion

on surface points since the criterion highly depends on the descriptor. Therefore,

in addition to the classical way of detecting image based keypoints we also locate

interest points by regular sampling on the 2D range image domain. Sparse245

sampling would yield insufficient descriptive information whereas fine sampling

would yield gathering the descriptor of a specific feature for multiple times.

In the latter case, similar descriptors will be merged in the BoF framework

whereas distinct features will be clustered into different “words”. Therefore, our

implementation uses a fine sampling to ensure distinctiveness. On the other250

hand, we also utilize SIFT and SURF keypoints for shape index mapped images.

4. Global Descriptors

In this section, global methods for describing single view depth models are

presented. Here, previously employed local descriptors are utilized for global

description. Besides our previously proposed spherical harmonics transform255

(SHT) based descriptor is also presented. Although SHT, is not a new concept in

shape retrieval research, we propose to utilize it for depth data by representing

the models in a world-oriented manner.

Local to Global:. In this study, Spin images, 3D moment invariants and D2

distribution descriptors are also utilized for global description. This is achieved260

by extending their supporting regions to cover the entire shape. Similar com-

putations as explained in the previous section are then followed. Besides, a

modification to D2 distributions based on a saliency constraint is proposed.

4.1. Constrainted D2 Distribution

In [16], it is shown that D2 distribution is robust to noise, small cracks265

and holes. Osada et al. [16] argue that the robustness is satisfied due to the

random selection strategy. We tested ordinary D2 distribution descriptor on

our database as a global descriptor, besides we also tested our modified version

(Salient D2). The modification is the point selection strategy. Instead of random
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point selection, we impose saliency constraint. Points which are informatively270

salient are selected and the D2 distribution is evaluated among them. We define

salient points as the ones having high or low curvature values compared to their

local neighbourhood. Surface curvature estimated at point p is computed using

the formula: cp = λ0/(λ0 + λ1 + λ2) where λ0, λ1, λ2 are the three eigenvalues

satisfying λ0 ≤ λ1 ≤ λ2 obtained from Principle Component Analysis (PCA) of275

the local neighbourhood of the surface point p.

4.2. Spherical Harmonics Transform

The square integrable complex functions defined on two-sphere S2 form a

Hilbert-space where the inner product of two functions f(θ, ϕ) and g(θ, ϕ) in

this space is defined as follows:280

〈f, g〉 =

∫ π

0

f(θ, ϕ)g(θ, ϕ)sinθ dθdϕ (4)

The Spherical Harmonics Y m` of degree ` and order m (| m |≤ `) form an

orthonormal basis in this space. In Figure 7, visual representation of spherical

harmonics Real{Y m` }2 is shown up to degree 3. They are related with the

associated Legendre polynomials Pm` as follows:

Y m` (θ, ϕ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!︸ ︷︷ ︸
K`m

Pm` (cos θ) eimϕ (5)

Pm` (x) =
(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` (6)

Consequently, any function, f(θ, ϕ), defined in this space can be written as a

combination of these basis functions as follows:

f(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

fm` Y m` (θ, ϕ) (7)

where expansion coefficients f̂m` are projections of the function f(θ, ϕ) on the

basis functions. They can be obtained utilizing the inner product (Equation 4)
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defined in this space as follows:

f̂m` =

∫ π

0

∫ 2π

0

f(θ, ϕ)K`mP
m
` (cos θ) eimϕsinθdϕdθ (8)

If the function f(θ, ϕ) is bandlimited with B, then it can be written as a285

finite weighted summation of the basis functions (Discrete Spherical Harmonics

Transform, DSHT). For a function, f(θ, ϕ), sampled in an equiangular grid

(2B × 2B) with a sum of 4B2 points, expansion coefficients f̂m` are obtained

follows [55]:

f̂m` =

√
2π

2B

2B−1∑
j=0

2B−1∑
k=0

wjf(θj , ϕk)Pm` (cosθ)e−imϕ (9)

The coefficients f̂m` is equal to zero for ` ≥ B for functions bandlimited290

with B. Consequently, the number of non-zero coefficients is B2. The original

function can be recovered from these coefficients when the inverse Spherical

Harmonics Transform is applied. If the function is not bandlimited then the

recovered function using the expansion coefficients obtained from DSHT is an

approximation of the original function. As B increases, the error between the295

approximate function and the original one decreases

Figure 7: Visual representation of spherical harmonics up to degree 3. Real{Ym
l }

2 is plotted,

positive and negative portions are coloured with red and blue respectively
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4.2.1. Spherical Harmonics in Shape Analysis

Vranic et al. proposed to use Spherical Harmonics Transform in 3D model

retrieval [14]. They describe the shape as a spherical function f(θ, ϕ), where the

origin is selected as center of the mass of the model. The value of the function

f(θ, ϕ) is the length of the ray that is emanating from the origin and ending

at the outermost intersection of the 3D model. They perform DSHT on this

functional representation. Magnitude of the expansion coefficients are utilized

as a feature vector. The descriptors are then compared using L1 norm. Their

method has two disadvantages. First one is the necessity of a pose normalization

step. Vranic propose a modified Principal Component Analysis (PCA) method

for this purpose. Secondly, the functional representation proposed by Vranic

[14] ignores interior structure of shapes. Later, Funkhouser et al. propose to

decompose a 3D model into a collection of functions defined on concentric spheres

to use spherical harmonics [13]. This representation preserves interior structure

of shapes up to a level. Initially, they obtain the binary voxel grid of a model.

Then, by restricting to the different radii, they obtain a collection of binary

spherical functions. Their approach does not require pose normalization, since

their descriptor is rotation invariant. This is achieved by a property of Spherical

Harmonics Transformation. The amount of the energies contained at different

frequencies does not change when the function is rotated:√√√√ m=∑̀
m=−`

|f̂m` |2 =

√√√√ m=∑̀
m=−`

|f̂m`,ROTATED|2 (10)

Their feature vector for each spherical function is formed by collecting these

scalars for each frequency ` and the overall shape descriptor is obtained by

concatenating these feature vectors. L2 norm is used to compare two descriptors.300

Vranic et al. [15] argue that many fine details are lost in the binary voxel

grid representation and propose a ray-casting method that finds all points of

intersection. Therefore, Vranic uses concentric spheres with ray based descriptor

with normalization step. It is argued in [15] that this method outperforms

rotation invariant spherical harmonics descriptor based on binary voxel grid [13].305
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Figure 8: Description of the world with respect

to the camera (Top view of a “tea pot” scene).

Spherical function f is normalized such that

maximum extend is equal to one.

Moreover, Kazhdan et al. [12] used spherical harmonics as a general tool to

transform rotation dependent shape descriptors into rotation independent ones.

Apart from the aforementioned approaches, spherical harmonics transform is

used in many other shape analysis studies such as in a very recent study [26]

as it is employed to represent 3D histogram of oriented gradients (3DHOG) for310

obtaining rotation-invariant 3D descriptors.

4.2.2. Lossless SHT

Obviously, SHT can describe functions defined on two-sphere effectively. Since

many 3D shapes are not star shaped, i.e. spherical representations are not single

valued, in literature concentric spheres are proposed to define shapes on spheres.315

In that case, information loss depending on the radius discretization is inevitable.

In this study, we formulate a lossless representation of depth data as follows:

A range image can be represented with a spherical function with ray casting

strategy. Besides, all available information is preserved with this representation.

Instead of describing the shape, we describe the world captured from the camera320

(Figure 8). The main steps for computing our spherical harmonics descriptor for

range models is shown in Figure 9.

Firstly, background is removed. The origin of the coordinate frame is assigned

as the center of the camera. Spherical coordinates is used and the 3D space is

discretized according to the resolution of the input image. The surface f(θ, ϕ) is
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Figure 9: Main steps for computing our spherical harmonics descriptor (Lossless SHT ) for

range models.

initialized with zeros. The coordinates of data points are expressed with respect

to the camera frame; associated (θ, ϕ), and the length of the ray connecting the

point with the origin is calculated. The ray length is assigned as the value of

f(θ, ϕ). The maximum ray length is determined and the function is normalized

such that the function has the maximum value of one. For non-object parts of

f(θ, ϕ) the value one is assigned (Figure 8). With the use of SHT, the function

is expressed as a finite weighted summation of the basis functions. Utilizing

the rotation invariant property of the spherical harmonics, the amplitude of the

coefficients within each frequency band (`) is computed. The feature vector is

formed (signature of the range model) by concatenating these amplitudes. The

zero-order component is omitted:

f = (‖f`=1‖, ‖f`=2‖, · · · ‖f`=N‖) (11)

The Euclidean distance is used to compare two signatures. By assigning

value one to non-object parts; the same information is included to all range

models which is a neutral element, besides in comparison step the zero-order325

coefficient is ignored. Zero-order coefficient is related with the sphere shaped

basis shown in Figure 3. Rotations around the z-axis become invariant with

this representation. The global characteristic of range models captured by the

camera is described.
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5. Evaluation330

5.1. Database

To test and compare range data descriptors, we have built our own database.

It is publicly available and can be downloaded from here 3. It contains 545

range models divided into 18 classes. Our range images have a size of 256× 256

pixels. Each pixel pi is associated with a 3D point coordinate pi = (xi, yi, zi).335

Representative models for each class are shown in Figure 10. We collected 3D

mesh models from Princeton Shape Benchmark 4, AIM@SHAPE repository 5,

NTU shape database 6, and Konstanz University database 7. Then, by the

use of a COTS computer graphics software, we obtain depth views of these

models, as if they are acquired by a scanner. The main reason for generating340

our own database is to ensure the diversity. Despite the publicly available range

databases such as [4], most of them have some limitations for testing similarity

retrieval methods. These are due to their sizes (within class and overall), their

diversities, and due to object imperfections. Although our database consist of

toy data, we have higher diversity and larger number of object instances. In345

addition, a toy dataset can be considered to be more convenient for comparison

purposes such that performance measure of a method, when tested on a toy

dataset, is independent of object segmentation errors and independent of sensor

measurement errors.

In shape similarity retrieval applications, choice of databases has significant350

effect; so for obtaining more accurate performance results, algorithms should be

tested on a large database having high diversity. For example, different types of

ships (including huge sized ones), helicopters (including military ones), animals

(including wild ones) etc. and their different viewings should also be included

3http://www.ee.oulu.fi/~nyalcinb/sub/shape.html
4http://shape.cs.princeton.edu/benchmark/
5http://www.aimatshape.net/resources
6http://3d.csie.ntu.edu.tw/~dynamic/database/index.html
7http://www.informatik.uni-konstanz.de/en/saupe/research/finished-projects/

3d-model-retrieval/
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in the database. Databases comprised of real life scannings do not contain355

such kind of data because of the limitations in today’s possibilities. Despite

the synthetic structure, our database is a challenging one. First, intra class

similarity is quite high (mainly due to varied viewing directions). Secondly,

the interclass similarity is also high for some of the classes ( i.e. cup- potter,

dog-fourleg, spider-helicopter, human-gun, etc.). For simplicity, we are restricting360

the “similarity” criterion according to class labels. However, other similarity

arguments can also be adopted depending on the application such as accepting

a specific chair and a specific table as similar.

Figure 10: Exemplar depth map images from our database.

5.2. Performance Measures

In the procedure of retrieval, in response to a given set of users queries,

an algorithm searches the benchmark database and returns an ordered list of

responses called the ranked list. The number of retrieved elements can be as

high as the size of the database. The importance is given to the relevant matches

appearing at the top locations of the lists. Therefore, evaluation of retrieval

methods is not exactly the same as in a typical classification system. The most

commonly used statistics for measuring the performance of retrieval algorithms is

20



the Precision-Recall values. It is almost a standard procedure in shape retrieval

and enables an objective comparison of different methods. Precision is defined

as the ratio of the number of shapes retrieved correctly over the total number of

retrieved shapes (Equation 12). Recall is defined as the ratio of retrieved shapes

over the total number of relevant shapes in the database (Equation 12):

precision =
number of relevant items retrieved

number of retrieved items

recall =
number of relevant items retrieved

total number of relevant items in the database

(12)

365

Recall is also called sensitivity. Other measures used in information retrieval

evaluation such as E-Measure, F-Measure, First Tier, and Second Tier share the

similar idea with precision and recall. That is, they check the ratio of retrieved

elements in the query’s class that also appear within the top matches. Therefore,

we utilize the widely used precision-recall (PR) curves in this study to present370

the retrieval performance.

5.3. Experimental Results

Local Descriptors. In order to investigate the effects of parameter selection

and to present a fair comparison we performed several experiments. Effects of

vocabulary size in the Bag-of Features framework, support region, and keypoint375

sampling density is analyzed. Precision-Recall curves of these experiments are

shown in Figures 11,12, 13 and 14. Vocabulary sizes of 10, 30, and 100 are

evaluated. Local windowing is utilized for defining the support region. Window

sizes of 5× 5, 15× 15, and 35× 35 are employed. And finally, keypoint sampling

density in the uniform selection strategy is analyzed. Step sizes of 5, 10, and 15380

pixels between neighbouring keypoint locations are evaluated. Increasing step

size further yields empty keypoint sets for some of the input data. One particular

parameter is evaluated at a time and remaining ones are fixed. Vocabulary

Size of 30, support window size of 15 × 15 and step size of 5 in the keypoint
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selection is used as default parameters if they are fixed. L2 norm is employed in385

comparing the BoF descriptors.

In the calculation of D2 descriptor, the number of points selected randomly

among the support region is also adjusted. Number of samples corresponding

to the support region is noted in Figure 11. Histograms are calculated with 8

bins. In calculating the spin images descriptors, spherical coordinate space (α, β)390

is discretized into 10 bins. Shape index mapping is evaluated with SIFT(128

dimensional) and SURF(64 dimensional) features. Here, in addition to the

uniform keypoint sampling, SIFT and SURF keypoint detection strategies are

also utilized. SIFT keypoints are computed at local maxima and minima of

difference-of-Gaussian (DoG) images whereas SURF uses a hessian based blob395

detector to find interest points.

In the vocabulary generation stage of our Bag of Features framework, we

used the complete database. Similarly, during test time, every object in the

database is queried and similar objects are searched and indexed in the complete

database one by one. Therefore, we tested each method with 545 queries and400

the first retrieved result (the most similar object in the database with the query)

of indexing is always the query itself. Precision-Recall values are reported based

on the mean values of the 545 tests.

Based on the experiments, it can be concluded from the Precision-Recall

curves (Figure 11) of D2 Distribution descriptor that small support size degrades405

the performance. Similarly, utilizing quite large image patches does not increase

the performance as expected. On the other hand, increasing the vocabulary size

enhances the performance of the D2 Distribution descriptor up to a point along

the retrieval dimension. However, after that point precision clearly decreases.

In the keypoint sampling experiments it is evident that fine sampling provides410

better description.

In the Spin Images description tests (Figure 12), effect of support size changes

shows similar attitudes with the D2 Distribution descriptor. While small support

region is not capable of representing surface properties well enough, descriptor

that utilizes large regions looses it discriminative power. Higher vocabulary size415
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and fine keypoint sampling again improves the indexing performance.

3D Moment invariants descriptor presents the most inferior retrieval perfor-

mance (Figure 13). In contrast to previous ones, fine keypoint sampling and

large vocabulary do not enhance their retrieval results. Moments are not unique

descriptors, that is different shape geometries (different point distributions)420

can yield exactly same descriptor values. Therefore, the limiting factor in this

representation does not lie in the BoF’s parameter selection but lies in the

unsatisfactory way of description.

Performance of Shape Index mapping approach along with image based

features are given in Figure 14. As expected, SIFT and SURF provides similar425

performances in all settings as they have very similar feature description methods.

Support region size in the uniform sampling strategy is fixed and utilized as

16× 16, whereas support sizes are decided according to the selected scale within

the SIFT and SURF keypoint detection routines. We compare keypoint detection

strategies in the last graph of Figure 14. Best performed uniform sampling (Grid430

Keypoints) and SIFT and SURF keypoint detection performances are plotted.

Fine uniform sampling is superior to SIFT and SURF keypoint detectors. As

noted previously, 3D shapes have insufficient features and keypoint repeatability

is not satisfied. Therefore, classical feature detection techniques are incompetent

in capturing salient locations, even though Shape Index Mapping provides fair435

saliency amplification.

Finally, Figure 17 gives an overall comparison of local descriptor performances

in BoF framework. BeThe noise model is generated using a zero-mean Gaus

sian distribution.st performing settings are selected for each method for fair

comparison. Indexing performance of Moments are far behind the remaining440

ones. Other methods showed similar PR characteristics with a fine tuning of

parameters in BoF, as well as the parameters that take place in the descriptor

calculation.

Global Descriptors. We employ Spin images, 3D moment invariants and D2

distribution descriptors also for global description by extending their supporting445
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Figure 11: Performance Measures of Local D2 Distribution Descriptor with different parameter

settings. Best viewed in color.
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Figure 12: Performance Measures of Local Spin Image Descriptor with different parameter

settings. Best viewed in color.

regions to cover the entire shape. In addition, we tested spherical harmonics

transform using concentric spheres with ray casting [15] and our Lossless SHT

method for global description.

To construct the global D2 distributions and the global D2-Salient distri-

butions descriptors we utilize several sampling densities such as 1000, 1500,450

2500 and 104 point pairs. Point pairs are selected randomly among the en-

tire object. Jensen-Shannon Divergence (JSD), which is a symmetric version

of Kullback-Leibler Divergence, is used in comparing distributions. Figure 15

presents corresponding PR curves. The global D2 distribution yields better
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Figure 13: Performance Measures of Local Moments Descriptor with different parameter

settings. Best viewed in color.
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Figure 14: Performance Measures of Local Features on Shape Index Mapped Images with

different parameter settings. Best viewed in color.

performance by increasing sampling density up to a point. Further increase in455

sampling size decreases the discriminative power of the method. In the limit,

the distances between all combinations of the point pairs are included in the

distribution. Perhaps in that case some of the point pairs contribute to the

distribution more than once. The best performance among those tests belongs to

the Salient-D2 distribution with 2500 point pairs. The proposed modification in460

D2 distribution improved the performance slightly for 2500 point pairs. However,

for 1000 pairs, Salient-D2 distribution obviously has better retrieval characteristic

than standard D2 distribution. For time and space savings, such a modification
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could be utilized.

We tested Spin Image descriptor in the global scale with different α and β465

step sizes. Descriptor is constructed around the center point by first evaluating

the normal direction and the tangent plane of the surface at this point. Figure 16

compares different α, β settings. Increasing the Spin Image size by dividing the

spherical space into finer partitions does not increase the description performance.

Although higher resolution descriptor provides more information about the470

geometry of the shape it can not handle interclass similarity.

We compute the spherical harmonics expansion coefficients using S2KIT 8. In

the Lossless SHT calculation we discretize the 3D space represented by (r, θ, ϕ)

into a (1, 512, 512) grid. Totally, 262, 144 points are defined on the sphere. We

use l = 256, so we have a signature (descriptor) of length 255 as we use ray475

casting method using only one radius in a occlusion free representation. In the

offline phase, we extract the signatures of all database models similarly, when the

query is presented online phase takes place. Signature of the query is evaluated

and compared with the signatures of the database models using L2 norm.

In the first stage of the classical SHT, range model is translated so that its480

center of mass coincides with the coordinate origin. In contrast to Lossless SHT,

such representation could contain self occlusions w.r.t. the origin. Therefore,

concentric spheres should be utilized in classical SHT calculation. First, size of

the model is normalized to unit sphere and the radius is discretized into 32 levels;

and l = 32 is used. Eventually, the classical SHT descriptor become a 1024485

length vector (32× 32). Although concentric spheres are utilized, classical way

of representing range models using SHT is lossy due to the finite r discretization.

Moment descriptors are easy to calculate and does not require parameter tun-

ing. Figure 18 gives an overall comparison of global descriptors. Again, whenever

applicable, best performing parameters are selected. This time D2 distribution490

descriptor shows the worst performance. Classical SHT perform better than D2

distribution and slightly worse than the proposed method. On the other hand,

8http://www.cs.dartmouth.edu/~geelong/sphere
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Figure 15: Comparison of mean Precision-Recall

curves of global D2 Disribution and Salient D2 Dis-

tribution descriptors for different point samples.

Figure 16: Comparison of mean Precision-Recall

curves of global Spin Images descriptor for different

α and β discretization.

Figure 17: Comparison of local methods in BoF

frame work. Best performing settings are selected

for each method.

Figure 18: Comparison of global methods.

our proposed method, Lossless SHT, has the best mean precision-recall curve

while the descriptor size is smaller than the classical SHT. Besides, computational

complexity of SHT is much more complex. In the classical method, number of495
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Figure 19: Comparison of best performing global

method (Lossless SHT ) and best performing local

method (Spin Images). A random retrieval perfor-

mance is also plotted for comparison.

Figure 20: Sample retrieval results of three queries belonging to three different classes human,

spider, and cup respectively using best global method (Lossless SHT ). First 16 matches are

shown. Queries are also included in the database, so first match is always the query itself.

transformations is equal to the number of concentric spheres (radius discretiza-

tion) whereas in our Lossless SHT only one transformation is performed. Besides,

our method has a lossless structure, available shape information is completely
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Figure 21: Sample retrieval results of three queries belonging to three different classes human,

spider, and cup respectively using best local method (Bag of Spin Images Features). First 16

matches are shown. Queries are also included in the database, so first match is always the

query itself.

included in obtaining the descriptor whereas classical way “approximates” the

shape geometry which could be utilized in shape reconstruction.500

We compare best local method (BoF Spin Images) and best global method

(Lossless SHT) in Figure 19. Both approaches present very similar performances

in indexing range models in our database. Sample search results of first 16

matches are also given in Figures 20 and 21 for randomly chosen three queries

(specific id’s in the database: human01d1, spider01d3, and cup05d1). False505

matches are marked in the figure. These particular retrieval performances of

both methods are also similar except the cup search with BoF Spin Images.

Lossless SHT retrieves more accurate objects for the query. In Figure 19 indexing

performance of a random experiment is also shown in order give an idea to the

reader about performances of the analyzed approaches and the size of the510

database.

In Figures 20 and 21, there are many objects which are visually and geomet-
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rically similar to the query but are not listed in the same class with the query

are retrieved and marked as false matches. We define those matches as “good

false matches”. Retrieving helicopter for spider query and retrieving pottery in515

querying cup sample can be considered as “good false matches”. If those good

false matches are counted as true positives then PR curves would move up to a

higher level.

Finally, in the following experiments, we compare performances of the two

winning methods from local and global descriptors on noisy and partially occluded520

models.

Noise. The noise model is generated using a zero-mean Gaussian distribution

as the noise of Kinect-like sensors consist of such signals. We add noise to the

depth value of each sample with standard deviations (σd) of 0.001, 0.01, 0.1, and

0.5 proportional to its depth as follows:525

Znoisy = Z + Z ×N (0, σd) (13)

Figure 22 shows the performances of Lossless-SHT and BoF Spin Images

under noise. At low noise levels with σd = 0.001 and 0.001, for Lossless SHT,

the area under PR curve seems to be same with a different curve. On the other

hand, at high noise levels with σd = 0.1 and 0.5, the performance is clearly

decreased. For BoF Spin Images, retrieval performance is gradually decreasing530

with the increasing noise. However, we believe that the performance decrease in

our global method is also due to the overfitting problem which is more likely at

high noise levels.

Occlusion. For experimenting the occlusion effect, we applied simple masks

onto the objects. Rectangular masks of sizes 21 × 21, 61 × 61, and 101 × 101535

centered at image centers are employed as shown in Figure 23. Figure 24

presents retrieval performances for occluded models. Self occlusions are already

present in depth data and objects are partial. Introducing additional occlusion

affected the performance of global descriptor more than the local descriptor
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Figure 22: Noise effect. (Left) BoF Spin Images, (right) Lossless SHT.

Figure 23: Rectangular masks are employed to simulate occlusion. Original model is shown first

and occluded model with masks sizes of 21× 21, 61× 61, and 101× 101 are shown sequentially.

as expected. Occlusions just in the center of the model with sharp borders540

must have introduced high frequency components in the spherical harmonics

transformation which could be one of the reasons for the performance reduction.

5.4. Summary and Discussions

We present here a systematic evaluation and comparison of local and global

shape descriptors. For local description, we evaluate Spin Images, 3D moment545

invariants, D2 distributions and image based features (SIFT, SURF) on shape

index maps. We observe that the changes in BoF parameters (keypoint sampling,

support size, dictionary size) imply considerable variations in the performance.

In most settings, finer keypoint localization exhibit higher performances. Best

performance is obtained by Spin Images whereas the 3D moment invariants has550

the worst performance compared to others. Moments capture coarser details
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Figure 24: Occlusion effect. (Left) BoF Spin Images, (right) Lossless SHT.

hence, they are not powerful in distinguishing shapes. Although spin images

do not generate unique descriptors, they have a higher discrimination power

both in local and global configuration. Image based featured on shape index

mapping achieves a descriptive power similar to spin images at the cost of555

additional processing to obtain mapping. For time crucial applications and large

datasets global descriptors is the best choice. Because, memory and computation

requirements are high for local descriptors.

In this work, local features are also adapted for global description. Spin

images descriptor when it is utilized to describe objects globally performed560

slightly worse than its local counterpart. Conversely, Moments has a better

performance on the global scale. D2 distributions descriptor performs almost

same in both cases. Among the global approaches, our Lossless SHT method

has the best PR curve. Global descriptors have rather simple formulation and

they can be extended with additional features easily. However, global techniques565

suffer from generalizing class specific signatures and suffer from overfitting.

Computational complexity. Execution time comparison for Bag of Spin Im-

ages and Lossless SHT is given in Table 1. Although, our codes are not optimized

for running time, the table gives a rough idea about computation times. Since

BoF framework needs a dictionary prior to the stage of descriptor computation,570
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complexity for local descriptors is higher than their global counterparts. In

addition, after building the dictionary, feature vectors from local regions are

handled again to form a histogram representation by finding the closest “word”

from the “dictionary”. The timing for construction of dictionary and BoF

representations are directly proportional to the number of keypoints selected575

from the models. Therefore, we present two exemplar timing for two different

keypoint sampling. Similarly, memory requirements are again related with BoF

parameters, dictionary size, and the length of the descriptor vectors. Therefore,

local descriptors are more space demanding than global ones. In Table 1, we

report running times for the complete database; including the small overhead to580

compute PR curves and indexing. Similarity indexing is performed using the

efficient Fast Library for Approximate Nearest Neighbors (FLANN) from the

OpenCV library.

Table 1: Computation times

Bag of Spin Images

Stage
Keypoint step =1

Time (in sec)

Keypoint step =5

Time (in sec)

Building Dictionary 3113.36 148.13

BoF Representation 1650.51 79.79

Indexing 0.65 0.71

PR curve 0.03 0.03

Total 4764.58 228.66

Lossless SHT

Stage Time (in sec)

Descriptor Extraction 152.24

Indexing 3.14

PR curve 0.03

Total 155.41

Advantages and disadvantages. In the light of the experimental results,

we present a comparison table for local and global descriptors in Table 2. It585

summaries the pros and cons of the approaches for analysis of depth data.

Robustness to noise and computational complexities favors global descriptors

but local descriptors achieves better retrieval performance. Although local

descriptors require additional effort for tuning the parameters, they are more

discriminative than global descriptors based on the tested data, although the590

results could vary in some other data sets. On the other hand, scalability in
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Table 2: Comparison of local and global descriptors for representing depth data.

Local Descriptors Global Descriptors

Pros

More discriminative Robust to noise

Better suited to handle

clutter and occlusions
Simple to construst

Scalable

Cons

Sensitive to noise Overfitting

Laborious parameter tuning
Sensitive to

clutter and occlusion

Computationally complex

case of additional data can be handled easily with global description. Whereas,

additional data could require constructing new dictionaries within the bag of

features framework for local descriptors.

6. Conclusion595

To conclude, similar performances could be achieved both with local and

global feature extraction but slightly better retrieval performance is achieved

with the local ones. Local description strategy provides flexibility in handling

different scale properties therefore, tolerate incomplete information of depth

data. However, computational complexity of local description is more complex600

than global approaches due to laborious parameter tuning. A disadvantage of

global methods could be due to overfitting problem. In other words, they tend

to describe objects in detail which sometimes makes feature vectors of similar

objects draw apart in the descriptor space. On the other hand, local descriptors

extract a summary from the query therefore, they have an increased capacity605

to generalize data. This could lead to underfitting problems if the number of

“words” in the BoF framework is not tuned properly.

Finally, we would like to point out that global and local descriptors can be

merged to achieve a higher performance as they are complementary. Future
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work includes evaluating different strategies for combining descriptors and test610

the performance gain. Future work would also test the robustness of merged

descriptors in case of noise and occlusion.
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